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Abstract Decisions related to subsurface engineering problems such as groundwater management,
fossil fuel production, and geologic carbon sequestration are frequently challenging because of an over-
abundance of uncertainties (related to conceptualizations, parameters, observations, etc.). Because of the
importance of these problems to agriculture, energy, and the climate (respectively), good decisions that are
scientifically defensible must be made despite the uncertainties. We describe a general approach to making
decisions for challenging problems such as these in the presence of severe uncertainties that combines
probabilistic and nonprobabilistic methods. The approach uses Bayesian sampling to assess parametric
uncertainty and Information-Gap Decision Theory (IGDT) to address model inadequacy. The combined
approach also resolves an issue that frequently arises when applying Bayesian methods to real-world
engineering problems related to the enumeration of possible outcomes. In the case of zero nonprobabilistic
uncertainty, the method reduces to a Bayesian method. To illustrate the approach, we apply it to a
site-selection decision for geologic CO2 sequestration.

1. Introduction

A decision is the end-goal of many scientific efforts. Uncertainty often plays an important role in these deci-
sions. The presence of uncertainty is especially pronounced in earth science applications where models are
often inadequate (due to, e.g., geologic heterogeneity) and the decision may have enormous consequences
(e.g., deployment of CO2 sequestration to address climate change). Hence, there is a need for robust meth-
odologies and techniques to support decisions in earth science applications.

The standard approach to scientific decision support is for a scientist or group of scientists to analyze data
and utilize models to quantify an uncertain outcome. The quantification of the uncertain outcome can then
be presented to a decision maker (e.g., a manager, government agency, or policy-maker) whereafter a deci-
sion is made. One potential difficulty with this approach is that uncertainty quantification is a complicated
subject and the decision maker may not fully understand the impact of the uncertainty on the decision [Liu
et al., 2008].

One way to mitigate this difficulty is by explicitly incorporating the decision goals within the uncertainty
quantification framework [Berger, 1985; Ben-Haim, 2006]. This places more of the burden of understanding
the impact of the uncertainty on the decision with the scientists who are quantifying the uncertainty, and
less of burden with the decision maker. We explore one such approach that combines Bayesian methods
for probabilistic uncertainty quantification [Lee, 2012] with a nonprobabilistic approach called Information-
Gap Decision Theory (IGDT) [Ben-Haim, 2006]. IGDT is considered a nonprobabilistic approach, because it
does not include a notion of likelihood. Instead, it describes a set of possibilities (without assigning probabil-
ities) that are within a given ‘‘horizon of uncertainty.’’ The horizon of uncertainty can range from zero (where
the set of possibilities contains only one element—the nominal element) to infinity, with the set of possibil-
ities increasing as the horizon of uncertainty increases. The horizon of uncertainty is essentially an index to
nested sets of possibilities. The horizon of uncertainty can also be called ‘‘level of information-gap uncer-
tainty.’’ For other examples of applying IGDT in a hydrogeological context, see Harp and Vesselinov [2013]
and O’Malley and Vesselinov [2014a].

The Bayesian approach provides a mathematically rigorous method for quantifying parametric uncertainty.
IGDT makes it possible to incorporate decision goals and provides a mechanism to make the Bayesian
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analysis more scientifically rigorous (as opposed to mathematically rigorous). We explore this approach in a
general context in section 2. While the approach is general enough to be applied to a wide set of problems,
we explicitly apply it in the context of a geologic CO2 sequestration decision scenario in section 3.

Geologic CO2 sequestration is an important technology for mitigating climate change due to rising levels of
CO2 in the atmosphere. In a well-chosen reservoir, it is likely 99% of geologically sequestered carbon would
remain sequestered for over 1000 years [Metz et al., 2005]. The key here is that the reservoir be well-chosen
so as to avoid leakage through wells, faults, and fractures. There is also the potential to ‘‘trigger small seis-
mic events’’ [Metz et al., 2005]. Therefore, a reservoir should be chosen so that the injected CO2 has little
potential to seismic activity. The decision scenario that we explore is to choose a reservoir for CO2 injection
that avoids leakage and induced seismicity.

There were several studies on the analysis and model simulation (analytical, semianalytical, and numerical) of
CO2 leakage [Pruess, 2004; Doughty and Pruess, 2004; Nogues et al., 2011; Zhou et al., 2009; Gasda et al., 2004;
Avci, 1994; Nordbotten et al., 2004, 2005; Cihan et al., 2011]. Fewer studies were performed on model estima-
tion of the leakage based on inverse analyses of observed pressure changes in the subsurface (using synthetic
or field data). The permeability values of actual abandoned wells were estimated through inverse analysis of
observed data in the field in Gasda et al. [2011]. The feasibility of leakage pathway detection was explored
using inverse modeling-based pressure changes induced by a leaky well measured from monitoring wells in
Jung et al. [2012]. The use of synthetic pressure and surface-deformation measurements was tested for the
detection of leakage pathways in Jung et al. [2013]. A comparison of several sensitivity analyses was carried
out in the context of CO2 sequestration in Wainwright et al. [2014]. A comprehensive system-level model for
performance assessment of geologic CO2 sequestration that addresses uncertainty probabilistically was
described in Stauffer et al. [2006, 2008]. Our approach builds upon this work by utilizing existing modeling
tools and probabilistic uncertainty quantification methods, but combining them with IGDT.

2. Bayesian-Information-Gap Decision Theory

Three forms of uncertainty are addressed within the Bayesian-Information-Gap Decision Theory (BIG DT)
framework: forward model uncertainty/inadequacy (including model structural uncertainty), model parame-
ter uncertainty, and uncertainty in the distribution of residuals representing mismatches between field
observations and model predictions (this type of uncertainty typically arises in inverse model analyses
where field observations are used to calibrate a model and estimate unknown model parameters). The
approach we describe here generalizes a previous application of this approach to a groundwater contami-
nant remediation problem [O’Malley and Vesselinov, 2014b].

2.1. Model Inadequacy
It is necessary to address model inadequacy because models (including the model we employ here) almost
always oversimplify the physics associated with the actual processes. For example, uniform parameters are
sometimes used to characterize aquifer properties. In reality these parameters are likely to be heterogene-
ous, and this will impact the model predictions. When models include aquifer heterogeneity, the scale of
the model heterogeneity is often much coarser than the scale of the aquifer heterogeneity [e.g., Wen and
G�omez-Hern�andez, 1996]. Another example is related to deformation process associated with fluid pressure
changes in aquifers [Wang and K€umpel, 2003]. Frequently, these processes are ignored in the models as
well.

To begin, we assume that there is a parametric physics model that makes predictions. We also assume that
the model has unknown parameters that can be estimated by model calibration against site observations.
We then utilize this parametric model to inform a decision. Denote this parametric model by

FðqÞ5 F1ðqÞ; F2ðqÞ; . . . ; FNðqÞ½ �; (1)

where q is the model parameters (model inputs) and the Fi is the model outputs. For example, in the geo-
logic CO2 sequestration problem studied here, the components of q are aquifer properties, well properties,
and an injection rate, and the Fi is water levels at different times and locations.

We address model inadequacy using an information-gap model of uncertainty, Mð�;qÞ, where � is called
the horizon (or level) of uncertainty. For each � � 0; Mð�;qÞ is the set of model outputs that are possible
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within a given horizon of uncertainty. These sets should be chosen so as to represent the uncertainties as
well as possible (an art more than a science) and must have the following two properties. First, when �5 0,
Mð�;qÞ is the set containing only the element FðqÞ, that is,

Mð0;qÞ5fFðqÞg: (2)

This ensures that the parametric model predictions are the first thing that should be considered and noth-
ing else should be considered when the horizon of uncertainty is equal to zero. Second, the sets must be
increasing with �, that is, when �1 � �2

Mð�1;qÞ � Mð�2;qÞ: (3)

This ensures that as the horizon of uncertainty increases, the set of possible model outputs should only get
bigger, never getting smaller (i.e., the sets are nested).

2.2. Parametric Uncertainty
Generally the most appropriate parameter values, q, to be used in the parametric model, FðqÞ, are
unknown. We employ Bayes theorem to produce a posterior probability distribution for the parameters,
conditioning on a vector of observations, O. Bayes theorem provides a systematic way for updating the
posterior distribution of the parameters based on observed data. Formally, this is expressed as

f ðqjOÞ5 f ðOjqÞf ðqÞð
X

f ðOjqÞf ðqÞdq
; (4)

where f ðqjOÞ is the posterior probability density function for the parameters conditioned on the observations,
f ðOjqÞ is the probability density function for the observations conditioned on the parameters, and f ðqÞ is the
prior probability density function for the parameters. Equation (4) is related to the parametric model through
f ðOjqÞ which typically takes the form

f ðOjqÞ5gðO12Fi1ðqÞ;O22Fi2ðqÞ; . . . ;OM2FiMðqÞÞ; (5)

where g is some multivariate probability density function, Fij is a model output that corresponds to observa-
tion Oj, and the Oj2Fij ðqÞ are called residuals. For example, if the residuals follow a multivariate normal dis-
tribution with mean l and covariance R, then

gðxÞ5
exp 2ðx2lÞT R21ðx2lÞ=2

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞMjRj

q : (6)

Each set, Mð�;qÞ, has a probability density associated with it. This probability density is given by equation
(4). In the same way that we might represent a random variable for the parameters with a capital Q, we will
use Mð�;QÞ to represent a random set.

In practice, equation (4) is frequently difficult to compute, because the integral in the denominator must
often be taken over a high-dimensional space. This difficulty can be circumvented by employing Markov
Chain Monte Carlo (MCMC) sampling methods that require only ratios, f ðq1jOÞ=f ðq2jOÞ, which eliminate
the dependence on the constant denominator [Metropolis et al., 1953; Gelfand and Smith, 1990; Geyer,
1992]. A number of techniques [e.g., Plummer, 2003; Vrugt et al., 2009; Lunn et al., 2009; Goodman and
Weare, 2010; Vihola, 2012] have been developed to perform this sampling effectively and efficiently. In the
application considered, we have elected to use the sampler described in Vihola [2012] due to its robustness
and ease of use.
2.2.1. Uncertainty in the Residual Distribution
In the presented analysis, model inversion is applied where field observations are used to calibrate the
model and estimate the unknown model parameters. However, the results of the inverse analysis strongly
depend on assumptions that are made about the statistical properties of the residuals f ðOjqÞ. In complex
applications, the correct form for f ðOjqÞ is usually, perhaps always, uncertain. This uncertainty implies that
any expected values or probabilities that result from applying equation (4) are also uncertain. It is common
practice to choose f ðOjqÞ for convenience rather than correctness. For example, it is sometimes assumed
that observations are independent, Gaussian, or both without any rigorous justification. It is important to
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note that the assumption of a particular residual distribution implies a certain form for the model inad-
equacy. In this way, the uncertainty in the residual distribution accounts for model inadequacy as well.

To address this uncertainty, we utilize an information-gap uncertainty model. As with the previous information-
gap uncertainty model (section 3.1), this is a collection of sets that are parameterized in terms of the horizon of
uncertainty, �, and we denote this set Uð�Þ. As before, it must have the property that if �1 � �2 then

Uð�1Þ � Uð�2Þ: (7)

When �5 0, U(0) must be a set containing only one likelihood function for the observations conditioned on
the parameters, q. This likelihood function is called the nominal likelihood function, and we denote it by
f0ðOjqÞ, so that

Uð0Þ5ff0ðOjqÞg: (8)

In IGDT, the word ‘‘nominal’’ is used in the sense of ‘‘stated or expressed but not necessarily corresponding
exactly to the real value’’ [Jewell et al., 2001]. Here the nominal concept is used to define an initial conceptu-
alization of the statistical relationship between the model parameters and the observations. In some sense,
this initial set, U(0), defines our best estimate for the statistical relationship, and the information-gap model,
Uð�Þ, describes the uncertainty in the estimate.

2.3. Making a Decision
Before making a decision, it is necessary to state some performance requirements or decision goals. In the
BIG DT framework, these goals are of two types. The first type is related to the behavior of the physical sys-
tem, and states the system behavior that we would like to take place. For example, in a groundwater reme-
diation application of this approach [O’Malley and Vesselinov, 2014b], this statement was that the
contaminant concentration at a point of compliance should be below a certain threshold. Whether or not
this goal is satisfied, which is determined via the model predictions, F5½F1; F2; . . . ; FN�, where these models
are not necessarily the parametric model described in equation (1), and may be any of the models con-
tained in the sets, Mð�;qÞ. Formally, this can be described with a binary function

GðFÞ5
� 1; if the outcome is a success

0; if the outcome is a failure
: (9)

The second type is a requirement that the probability of violating the desired system behavior be below a
threshold, P0. Formally, this takes the form

8f 2 Uð�Þ; Pð9F 2 Mð�;QÞ : GðFÞ50Þ < P0; (10)

where the probabilities are computed via equation (4). Note that here 8 should be read as ‘‘for all,’’ 9 should be
read as ‘‘there exists’’ and : should be read as ‘‘such that.’’ Unrolling this formality, we can say that the notation,

9F 2 Mð�;QÞ : GðFÞ50; (11)

expresses the idea that within the horizon of uncertainty, �, it is possible (9F 2 Mð�;QÞ) to fail (GðFÞ50). The
notation,

8f 2 Uð�Þ; Pð. . .Þ < P0; (12)

expresses the idea that it is guaranteed (8f 2 Uð�Þ) that the probability will be below the threshold, P0

(Pð. . .Þ < P0). Putting this together, equation (10) states that within the horizon of uncertainty, �, the proba-
bility of it being possible to fail is below the threshold, P0. In other words, within the horizon of uncertainty,
�, it is not possible that the probability of failure exceeds or equals P0.

We now define the information-gap robustness for this system as

�̂5max f� � 0 : 8f 2 Uð�Þ; Pð9F 2 Mð�;QÞ : GðFÞ50Þ < P0g: (13)

The information-gap robustness defines the maximum horizon of uncertainty at which the probability of it
being possible to fail is below the threshold, P0. When making a decision among alternatives, one chooses the
option that has the greatest information-gap robustness, �̂. These options might be different remedies in a
groundwater contamination scenario [O’Malley and Vesselinov, 2014b] or different geologic sites at which CO2

could be injected. We will now explore applying this approach to the latter situation.
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3. Application to Geologic
CO2 Sequestration

We now consider an application of the
BIG DT decision analysis to a CO2 seques-
tration problem. The problem is the
selection of a site at which CO2 will be
injected into a deep aquifer. The goals of
the decision analysis are to

1. limit the possibility of inducing a
high overpressure in the host forma-
tion to avoid inducing seismicity and

2. limit the possibility of inducing a
high overpressure/flow into the aqui-
fer overlying the host formation to
avoid groundwater contamination

The suitability of two similar sites is
evaluated. Both sites contain a host
aquifer and an overlying aquifer sepa-
rated by an aquitard that prevents
flow and the propagation of pressure

between the two aquifers (see Figure 1). The suitability is evaluated with a 30 day injection test. The pres-
sure response is observed in two screens (one in the host aquifer and the other in the overlying aquifer) of
an observation well.

The known parameters at the sites are the injection rate, the conductivites, specific storages, and thick-
nesses of both the host aquifer and the overlying aquifer. What is unknown is whether there is a leaky well
in the area, its location, geometry, and its resistivity to flow. The parameter values for the two sites are given
in Table 1. Note that all the parameters are the same except that the leaky well at Site 1 has a lower resistiv-
ity than the leaky well at Site 2. More information on the model and the parameters used are presented in
section 3.1.

3.1. Physical Model
A number of analytical and semianalytical models have been developed that capture the impact of injection
in deep aquifers on shallower aquifers [e.g., Avci, 1994; Nordbotten et al., 2004, 2005; Cihan et al., 2011].
Since the focus here is on the decision analysis and not the model, the relatively simple model developed
in Avci [1994] is employed. We note, however, that more complex models that involve more aquifer layers
or more wells could be employed with the methodology developed here. This solution for the flow through

Figure 1. The hydrogeological setup for a CO2 injection test consisting of two
aquifers separated by an aquitard with an injection well, an observation well with
two screens, and potentially a nearby leaky well.

Table 1. True Parameters for the Two Synthetic Sites Whose Suitability for CO2 Injection Is Being Evaluated

Parameter Description Site 1

Qw Injection rate 0:01 ðm3=sÞ
K1 Upper aquifer conductivity 1024 ðm=sÞ
K2 Lower aquifer conductivity 1026 ðm=sÞ
L1 Upper aquifer thickness 100 ðmÞ
L2 Lower aquifer thickness 200 ðmÞ
Sc1 Upper aquifer specific storage 731025 ðm21Þ
Sc2 Lower aquifer specific storage 1025 ðm21Þ
ra Leaky well radius 0:1 ðmÞ
X Leaky well resistivity Site 1: 33103 ðs=m2Þ,

Site 2: 104 ðs=m2Þ
r1 Distance from leaky well to upper obs. screen 100 ðmÞ
r2 Distance from leaky well to lower obs. screen 100 ðmÞ
rw Distance from injection well to lower obs. screen 25 ðmÞ
R Distance from injection well to leaky well 93:75 ðmÞ
Dh Head difference between upper and lower aquifer 0 ðmÞ
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the leaky well and the hydraulic head buildup at each observation screen can be expressed concisely in
Laplace space

~Qc 5

Qw
2pK2L2

K0 R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xSc2=K2

p� �
1Dh

x X1 1
2pK2L2

K0 ra

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xSc2=K2

p� �
1 1

2pK1 L1
K0 ra

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xSc1=K1

p� �h i ; (14)

~S1 5
~Qc

2pK1L1
K0 r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xSc1=K1

p� �
; (15)

~S2 5
Qw

2pK2L2x
K0 rw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xSc2=K2

p� �
2

~Qc

2pK2L2
K0 r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xSc2=K2

p� �
; (16)

where Qc is the flow through the leaky well; K0 is the modified Bessel function of the second kind
and zero order; S1 and S2 are the hydraulic head buildup in the upper and lower aquifers, respectively,
Qw is the injection rate; K1 and K2 are the conductivities in the upper and lower aquifers, respectively;
L1 and L2 are the thicknesses of the upper and lower aquifers, respectively; Sc1 and Sc2 are the specific
storage coefficients of the upper and lower aquifers, respectively; ra is the radius of the leaky well;
X is the resistivity within the leaky well, r1 and r2 are the distances from the leaky well to the obser-
vation screens in the upper and lower aquifers, respectively, rw is the distance from the injection well
to the observation screen in the lower aquifer; R is the distance from the injection well to the leaky
well; Dh is the preexisting hydraulic head difference between the upper and lower aquifers; and x is
the Laplace variable. Following the numerical approach used in Cihan et al. [2011] for a more general
solution, the solution is inverted from Laplace space numerically using Stehfest inversion [Stehfest,
1970a, 1970b]. In the notation of section 2, the Fi from equation (1) is

FiðqÞ5S1ðti; qÞ; i51; 2; . . . ; 30; (17)

FiðqÞ5S2ðti230; qÞ; i531; 32; . . . ; 60; (18)

where ti524i ½h� and q is a vector of uncertain parameters

q5½ra; R;X; r1� (19)

and the remaining parameters are known (Table 1). Note that because the observation screens in the upper
and lowers aquifer are part of the same well in this scenario, r1 � r2.

The model is used to compute the synthetic pressure build-up resulting from the injection test. Due to a
variety of factors including barometric effects, nearby pumping or injection not included in the model, earth
tide effects, and/or seismic activity, the signal recorded at the observation screens would contain a noisy
representation of the signal from the injection test. Therefore, the synthetic pressure build-up signal was
combined with a random noise to produce a set of daily ‘‘observations’’ over a simulated 30 day injection
test (see Figure 2).

The random noise signal is a fractional Gaussian noise [Mandelbrot and Van Ness, 1968] with a Hurst expo-
nent, H 5 3/4, and standard deviation, r52:5 ðcmÞ. This is a zero-mean Gaussian process with covariance
given by

E½GHðtÞGHðsÞ�5
r2

2
jt112sð j2H

22jt2sj2H
1jt212sj2HÞ; (20)

where GH is a fractional Gaussian noise. Note that the GH here is unrelated to the G from equation (9).
With H> 1=2, the noise exhibits persistent behavior—if the signal is positive at one time, it is more
likely to be positive at a future time than it is to be negative. With H< 1=2, the noise exhibits
antipersistent behavior—if the signal is positive at one time, it is more likely to be negative at a future
time than it is to be positive. When H 5 1/2, the noise is a Gaussian white noise which exhibits neither
persistence nor antipersistence. Gaussian white noise is expected if the residuals are unbiased,
independent, and normally distributed.

Fractional Gaussian noise was chosen somewhat arbitrarily. Other forms of noise could have been used as
well. Here we have chosen a value of H in the middle of the persistent regime, because experience indicates
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that residuals tend to be persistent.
The noise level again was chosen to be
in line with our experience examining
residuals, but will depend on how
accurately the model reflects the activ-
ity in the aquifers. For example, if there
is a strong pumping signal that is not
included in the model, the noise level
will likely be much higher.

3.2. Model Inadequacy
The model described in section 3.1
captures the most vital physics of the
scenario described, but certainly not all
of the physics. For example, the model
assumes that the aquifers are homoge-
neous, isotropic, extend infinitely, and
are separated by a totally impermeable
layer. We employ an information-gap

uncertainty model to deal with these issues of inadequacy in the physical model

Mð�;qÞ5
�

F :

���� Fi2FiðqÞ
FiðqÞ

���� � �; 8i

�
: (21)

The set Mð�;qÞ represents a set of possibilities, in this case changes in head, that are decreasingly close
(with increasing �) to the model prediction, FðqÞ. This is necessary, because our model may not be able to
represent the response of the head in the aquifer to the injection. The sets Mð�;qÞ represent the possibil-
ities within the horizon of uncertainty, �. The use of this information-gap uncertainty model essentially
states that the set of possible models at the horizon of uncertainty, �, is the set of models with a relative dif-
ference from the parametric model less or equal to than �.

Note that Mð0;qÞ5fFðqÞg, satisfying equation (2). Also, if �1 � �2 and F 2 Mð�1;qÞ then
���� Fi2FiðqÞ

FiðqÞ

���� � �1 � �2; 8i: (22)

This implies that F 2 Mð�2;qÞ, and hence Mð�1;qÞ � Mð�2;qÞ as required by equation (3). Therefore, the
sets Mð�;qÞ forms a valid information-gap uncertainty model.

3.3. Parametric Uncertainty
Parametric uncertainty is handled using the approach described in section 2.2. The prior distribution is

f ðqÞ � f ðra; R;X; r1Þ /
� fraðraÞfRðRÞfXðXÞfr1ðr1Þ; R; r1 plausible

0; R; r1 implausible;
(23)

where fraðraÞ is uniform density function on the interval ½0; 0:2� ðmÞ; fRðRÞ is a uniform density function on
the interval ½0; 1000� ðmÞ; fXðXÞ is a log-uniform density function on the interval ½0; 108� ðs=m2Þ, and fr1ðr1Þ
is a uniform density function on the interval ½0; 1000� ðmÞ. Note that the leaky well, the injection well, and
the observation well form a triangle with the sides of the triangle having length R, r1, and rw. Due to geo-
metric constraints, these three lengths cannot take arbitrary values (e.g., the length of one side cannot be
greater than the sum of the lengths of the other sides). For R and r1 to be plausible in equation (23), it must
be possible that R, r1, and rw be the lengths of the sides of a triangle.
3.3.1. Uncertainty in the Residual Distribution
In order to complete the description of how we deal with parametric uncertainty, we must specify the
information-gap model for equation (5) which defines the discrepancies (residuals) between the model-
predicted and observed pressures. We will utilize equation (6) where the mean, l, is zero and the covariance
of the observations within each screen is given by equation (20). The residuals in the upper observation
screen are assumed to be independent of the residuals in the lower screen. The information-gap model will

Figure 2. The set of synthetic observations generated by combining the physical
model using the true parameters with a random noise that are analyzed in the
Bayesian component of the uncertainty quantification.
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treat H as uncertain with a nominal value of H 5 1/2. This value of H corresponds to assuming that the resid-
uals are an uncorrelated white noise. The information-gap model will then capture the possibility that the
noise could be positively (H> 1=2) or negatively (H< 1=2) correlated.

Let O1
1;O1

2; . . . ;O1
30 denote the observations in the upper aquifer and O2

1;O2
2; . . . ;O2

30 denote the observa-
tions in the lower aquifer (see Figure 2). Define

fHðOjqÞ5
Y2

i51

gHðOi
12F30ði21Þ11ðqÞ;Oi

22F30ði21Þ12ðqÞ; . . . ;Oi
302F30ði21Þ130ðqÞÞ; (24)

where gHðxÞ is as given in equation (6) with the covariance function given in equation (20). This enables us
to construct the information-gap uncertainty model of the residual distribution,

Uð�Þ5
�

fHðOjqÞ :

����H2H0

H0

���� � �;H 2 ½0:2; 0:8�
�
; (25)

where H051=2. The requirement that H 2 ½0:2; 0:8� is to avoid numerical difficulties, and is not essential.
However, it must be required that H 2 ð0; 1Þ in any case. Note that Uð0Þ5ff1=2ðOjqÞg as required by equa-
tion (8). This states that the residuals are nominally a Gaussian white noise. Equation (7) is also satisfied by
Uð�Þ for essentially the same reason that Mð�;qÞ satisfies equation (3).

3.4. Making a Decision
For this scenario, we supply two goals related to the physical behavior of the system. One states that the
head increase in the upper aquifer observation screen due to the injection should be very small. This is
desired in order to avoid hydraulic communication between the two aquifers, which could contaminate the
upper aquifer. The other states that, due to the injection, the head increase in the lower aquifer observation
screen should not be excessive, so as to avoid induced seismicity. Formally, these are expressed as

max
i51;2;...;30

Fi < 7:5 ðcmÞ; (26)

max
i531;32;...;60

Fi < 103 ðmÞ; (27)

resulting in the binary function

GðFÞ5
� 1; max i51;2;...;30 Fi < 7:5 ðcmÞ and max i531;32;...;60 Fi < 103 ðmÞ

0; otherwise
: (28)

This makes it possible to apply equation (13). The results are presented in Figure 3. Site 2 has greater robust-
ness for any value of P0, and would
therefore be the site that is selected to
do the large-scale CO2 injection. In a
case where the two curves cross, the
decision maker would have to choose a
value of P0 (the maximum acceptable
chance of failure), and the preferred
site would be the one that has the
greatest robustness at that value of P0.
In this case, the potential for violating
the first decision goal is (max i51;2;...;30

Fi < 7:5 ðcmÞ) is more restrictive than
the more lenient second decision goal
(max i531;32;...;60 Fi < 103 ðmÞ). Site 1 has
lower resistivity, X (see Table 1), and
this is what makes Site 1 less robust
than Site 2.

When the horizon of uncertainty is
equal to zero, BIG DT reduces to

Figure 3. The robustness plotted against the maximum acceptable chance of fail-
ure, P0. Site 2 has greater robustness for any value of P0, and would therefore be
the preferred site.
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computing the probability of failure using Bayesian statistics. The Bayesian probability of failure is nearly zero
for both sites considered here. This makes it hard to make a robust decision based on a purely Bayesian analy-
sis, especially since there is significant uncertainty in the probability predicted by the Bayesian analysis (the
error bars dominate the mean). The BIG DT approach, on the other hand, is able to demonstrate that Site 2 is
more robust against uncertainty in the modeling and Bayesian analysis. Having full knowledge of the system,
this robustness can be attributed to Site 1 having a leakier well than Site 2 (which is the only difference
between the sites). Without full knowledge of the system, this is determined by considering the impact of
uncertainty in the functional form of the physical model via the information-gap model in equation (21), and
uncertainty in the Bayesian analysis via the information-gap model in equation (25).

With a Bayesian approach, we would seek to answer the question ‘‘What is the probability of failure?.’’ Given
that we do not know the conditional distribution functions needed to implement Bayes theorem correctly,
the answer to this question that we would obtain would not be justified. Therefore, it would be imprudent
to rely on this answer to make a critical decision. Instead, with the BIG DT approach, we seek to answer the
question ‘‘How wrong can my assumptions be without the probability of failure exceeding a given thresh-
old?.’’ Decisions that allow the assumptions to be more wrong are considered to be more robust. It is in this
sense that we say Site 2 is more robust against uncertainty than Site 1.

4. Conclusions

We have presented a general framework, called BIG DT, for making decisions in the presence of uncertainty.
This framework combines Bayesian methods with information-gap decision theory, and makes it possible to
incorporate part of the decision making process within the uncertainty quantification process. The design
of the framework is motivated by earth science applications where severe uncertainties are frequently pres-
ent and a representative set of outcomes cannot be enumerated in practice.

Demonstrating the general framework with a specific application, we explored a decision on site selection
for geologic CO2 sequestration. In this application, there were two decision goals that were considered. One
sought to avoid induced seismicity in the host formation and the other sought to avoid contaminating an
overlying aquifer. The product of this analysis (Figure 3) describes how wrong the modeling assumptions
can be (the robustness) in terms of the amount of risk that the decision maker is willing to accept (the maxi-
mum acceptable chance of failure). For any level of risk, Site 2 allowed the modeling assumptions to be
more wrong than Site 1 before exceeding this level of risk. Therefore, Site 2 was selected as the better site
at which to sequester CO2.

BIG DT provides a generalization of Bayesian methods to include nonprobabilistic uncertainty related to
model inadequacy and the residual distributions used in Bayes theorem. The application we have consid-
ered here concerns geologic CO2 sequestration, but can be applied much more broadly [see, e.g., O’Malley
and Vesselinov, 2014b]. The approach was constructed with the intention of dealing with the severe uncer-
tainties that are often found in subsurface and earth science applications.
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